Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 415, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472517

RESUMO

Estrogen regulates a wide range of neuronal functions in the brain, such as dendritic spine formation, remodeling of synaptic plasticity, cognition, neurotransmission, and neurodevelopment. Estrogen interacts with intracellular estrogen receptors (ERs) and membrane-bound ERs to produce its effect via genomic and non-genomic pathways. Any alterations in these pathways affect the number, size, and shape of dendritic spines in neurons associated with psychiatric diseases. Increasing evidence suggests that estrogen fluctuation causes changes in dendritic spine density, morphology, and synapse numbers of excitatory and inhibitory neurons differently in males and females. In this review, we discuss the role of estrogen hormone in rodents and humans based on sex differences. First, we explain estrogen role in learning and memory and show that a high estrogen level alleviates the deficits in learning and memory. Secondly, we point out that estrogen produces a striking difference in emotional memories in men and women, which leads them to display sex-specific differences in underlying neuronal signaling. Lastly, we discuss that fluctuations in estrogen levels in men and women are related to neuropsychiatric disorders, including schizophrenia, autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), bipolar disorder (BPD), major depressive disorder (MDD), substance use disorder (SUD), and anxiety disorders.


Assuntos
Transtorno do Espectro Autista , Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno do Espectro Autista/genética , Caracteres Sexuais , Transtorno Depressivo Maior/metabolismo , Estrogênios/metabolismo , Sinapses/metabolismo , Emoções
2.
J Neurosci Res ; 102(1): e25265, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284863

RESUMO

The olfactory working memory capacity (OWMC) paradigm is able to detect cognitive deficits in 5XFAD mice (an animal model of Alzheimer's disease [TG]) as early as 3 months of age, while other behavioral paradigms detect cognitive deficits only at 4-5 months of age. Therefore, we aimed to demonstrate that the OWMC paradigm is more sensitive and consistent in the early detection of declines in cognitive function than other commonly used behavioral paradigms. The prefrontal cortex (PFC), retrosplenial cortex (RSC), subiculum (SUB), and amygdala (AMY) of 5XFAD mice were harvested and subjected to immunostaining to detect the expression of ß-amyloid (Aß). Additionally, we compared the performance of 3-month-old male 5XFAD mice on common behavioral paradigms for assessing cognitive function (i.e., the open field [OF] test, novel object recognition [NOR] test, novel object location [NOL] test, Y-maze, and Morris water maze [MWM]) with that on the OWMC task. In the testing phase of the OWMC task, we varied the delay periods to evaluate the working memory capacity (WMC) of wild-type (WT) mice. Significant amyloid plaque deposition was observed in the PFC, RSC, SUB, and AMY of 3-month-old male 5XFAD mice. However, aside from the OWMC task, the other behavioral tests failed to detect cognitive deficits in 5XFAD mice. Additionally, to demonstrate the efficacy of the OWMC task in assessing WMC, we varied the retention delay periods; we found that the WMC of WT mice decreased with longer delay periods. The OWMC task is a sensitive and robust behavioral assay for detecting changes in cognitive function.


Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Disfunção Cognitiva , Masculino , Animais , Camundongos , Memória de Curto Prazo , Cognição , Disfunção Cognitiva/diagnóstico , Placa Amiloide
3.
Front Neurosci ; 17: 1281401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116070

RESUMO

Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.

4.
Funct Integr Genomics ; 23(4): 309, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37735249

RESUMO

Estrogen (E2) modulates the synaptic structure and plasticity in the hippocampus. Previous studies showed that E2 fluctuations during various phases of the menstrual cycle produce subtle neurosynaptic changes that impact women's behavior, emotion, and cognitive functions. In this study, we explored the transcriptome of the hippocampus via RNA-seq (RNA-sequencing) between proestrus (PE) and diestrus (DE) stages in young female rats to determine the effect of E2 of PE and DE stages on hippocampal gene expression. We identified 238 genes (at 1.5-fold-change selection criteria, FDR adjusted p-value < 0.05) as differentially expressed genes (DEGs) that responded to E2 between PE and DE stages. Functional analysis based on Gene Ontology (GO) revealed that a higher E2 level corresponded to an increase in gene transcription among most of the DEGs, suggesting biological mechanisms operating differentially in the hippocampus of female rats between PE and DE stages in the estrus cycle; while analysis with Kyoto Encyclopedia of Genes and Genomes database (KEGG) found that the DEGs involving neuroactive ligand-receptor interaction, antigen processing, cell adhesion molecules, and presentation were upregulated in PE stage, whereas DEGs in pathways relating to bile secretion, coagulation cascades, osteoclast differentiation, cysteine and methionine metabolism were upregulated in DE stage of the estrus cycle. The high-fold expression of DEGs was confirmed by a follow-up quantitative real-time PCR. Our findings in this current study have provided fundamental information for further dissection of neuro-molecular mechanisms in the hippocampus in response to E2 fluctuation and its relationship with disorders.


Assuntos
Cisteína , Transcriptoma , Humanos , Animais , Feminino , Ratos , Estrogênios , Estro , Hipocampo
5.
BMC Biol ; 21(1): 171, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568146

RESUMO

BACKGROUND: Working memory capacity impairment is an early sign of Alzheimer's disease, but the underlying mechanisms remain unclear. Clarifying how working memory capacity is affected will help us better understand the pathological mechanism of Alzheimer's disease. We used the olfactory working memory capacity paradigm to evaluate memory capacity in 3-month-old 5XFAD (an animal model of Alzheimer's disease) mice. Immunofluorescence staining of the prefrontal cortex was performed to detect the number of FOS-positive neurons, calmodulin-dependent protein kinase II-positive neurons, and glutamate decarboxylase-positive neurons in the prelimbic cortex and infralimbic cortex. A chemogenetic method was then used to modulate the inhibition and activation of excitatory neurons in the prelimbic cortex of wild-type and 5XFAD mice and to measure the memory capacity of mice. RESULTS: Working memory capacity was significantly diminished in 5XFAD mice compared to littermate wild-type mice. Neuronal activation of the prelimbic cortex, but not the infralimbic cortex, was attenuated in 5XFAD mice performing the olfactory working memory capacity task. Subsequently, the FOS-positive neurons were co-localized with both calmodulin-dependent protein kinase II-positive neurons and glutamate decarboxylase-positive neurons. The results showed that the activation of excitatory neurons in the prelimbic cortex was correlated with working memory capacity in mice. Our results further demonstrate that the chemogenetic inhibition of prelimbic cortex excitatory neurons resulted in reduced working memory capacity in wild-type mice, while the chemogenetic activation of prelimbic cortex excitatory neurons improved the working memory capacity of 5XFAD mice. CONCLUSION: The diminished activation of prelimbic cortex excitatory neurons in 5XFAD mice during task performance is associated with reduced working memory capacity, and activation modulation of excitatory neurons by chemogenetic methods can improve memory capacity impairment in 5XFAD mice. These findings may provide a new direction for exploring Alzheimer's disease therapeutic approaches.


Assuntos
Doença de Alzheimer , Memória de Curto Prazo , Camundongos , Animais , Memória de Curto Prazo/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Glutamato Descarboxilase/metabolismo , Neurônios/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos
6.
Brain Behav ; 12(8): e2703, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35849713

RESUMO

BACKGROUND: Working memory capacity (WMC) is the ability to maintain information over a few seconds. Although it has been extensively studied in healthy subjects and neuropsychiatric patients, few tasks have been developed to measure such changes in rodents. Many procedures have been used to measure WM in rodents, including the radial arm maze, the WM version of the Morris swimming task, and various delayed matching and nonmatching-to-sample tasks. It should be noted, however, that the memory components assessed in these procedures do not include memory capacity. METHODS: We developed an olfactory working memory capacity (OWMC) paradigm to assess the WMC of 3-month-old 5×FAD mice, a mouse model of Alzheimer's disease. The task is divided into five phases: context adaptation, digging training, rule learning for nonmatching to a single sample odor (NMSS), rule learning for nonmatching to multiple sample odors (NMMS), and capacity testing. RESULTS: In the NMSS rule-learning phase, there was no difference between wild-type (WT) mice and 5×FAD mice in the performance correct rate, correct option rate, and correct rejection rate. The WT mice and 5×FAD mice showed similar memory capacity in the NMMS rule-learning phase. After capacity test, we found that the WMC was significantly diminished in 5×FAD mice. As the memory load increased, 5×FAD mice also made significantly more errors than WT mice. CONCLUSION: The OWMC task, based on a nonmatch-to-sample rule, is a sensitive and robust behavioral assay that we validated as a reliable method for measuring WMC and exploring different components of memory in mice.


Assuntos
Doença de Alzheimer , Memória de Curto Prazo , Doença de Alzheimer/psicologia , Animais , Modelos Animais de Doenças , Flavina-Adenina Dinucleotídeo , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Olfato
7.
Transl Psychiatry ; 10(1): 431, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33319773

RESUMO

A decline in working memory (WM) capacity is suggested to be one of the earliest symptoms observed in Alzheimer's disease (AD). Although WM capacity is widely studied in healthy subjects and neuropsychiatric patients, few tasks are developed to measure this variation in rodents. The present study describes a novel olfactory working memory capacity (OWMC) task, which assesses the ability of mice to remember multiple odours. The task was divided into five phases: context adaptation, digging training, rule-learning for non-matching to a single-sample odour (NMSS), rule-learning for non-matching to multiple sample odours (NMMS) and capacity testing. During the capacity-testing phase, the WM capacity (number of odours that the mice could remember) remained stable (average capacity ranged from 6.11 to 7.00) across different testing sessions in C57 mice. As the memory load increased, the average errors of each capacity level increased and the percent correct gradually declined to chance level, which suggested a limited OWMC in C57 mice. Then, we assessed the OWMC of 5 × FAD transgenic mice, an animal model of AD. We found that the performance displayed no significant differences between young adult (3-month-old) 5 × FAD mice and wild-type (WT) mice during the NMSS phase and NMMS phase; however, during the capacity test with increasing load, we found that the OWMC of young adult 5 × FAD mice was significantly decreased compared with WT mice, and the average error was significantly increased while the percent correct was significantly reduced, which indicated an impairment of WM capacity at the early stage of AD in the 5 × FAD mice model. Finally, we found that FOS protein levels in the medial prefrontal cortex and entorhinal cortex after the capacity test were significantly lower in 5 × FAD than WT mice. In conclusion, we developed a novel paradigm to assess the capacity of olfactory WM in mice, and we found that OWMC was impaired in the early stage of AD.


Assuntos
Doença de Alzheimer , Memória de Curto Prazo , Animais , Humanos , Aprendizagem , Rememoração Mental , Camundongos , Camundongos Transgênicos
8.
Psychopharmacology (Berl) ; 237(4): 1233-1243, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31953648

RESUMO

RATIONALE AND OBJECTIVE: Vortioxetine has been reported to exhibit a variety of neurobiological functions and neuroprotective effects. In the present study, we aimed to investigate the effects of vortioxetine on cognitive performance in a transgenic mouse model of Alzheimer's disease (AD). METHODS: We administered vortioxetine (10 mg/kg, i.p., every day, for approximately 6 weeks), which acts on multiple 5-serotonin (5-HT) receptors, to 3.5-month-old 5×FAD mice. Subsequently, we used the open field (OF) test to detect anxiety-like behavior in the mice. The novel object recognition (NOR) test and Morris water maze (MWM) were used to assess the cognitive states of the 5×FAD mice. We also measured the levels of insoluble amyloid plaques and soluble ß-amyloid (Aß) plaques. Finally, we explored the expression levels of postsynaptic density protein 95 (PSD95), synaptophysin (SYP), and synaptotagmin-1 (SYT1) in the hippocampus of the mice. RESULTS: The administration of vortioxetine effectively reversed the reduction in anxiety-type behaviors in 5×FAD mice and improved the impairment in recognition memory and spatial reference memory. However, we did not find that vortioxetine decreased or delayed the formation of amyloid plaques or Aß. Interestingly, we found a significant increase in the expression levels of PSD95, SYP, and SYT1 in the 5×FAD mice after vortioxetine treatment compared with the control group. CONCLUSION: These results demonstrate that vortioxetine may improve cognitive impairment in 5×FAD mice. The role in cognitive improvement may be related to the beneficial effects of vortioxetine on synaptic function.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Sinapses/efeitos dos fármacos , Vortioxetina/uso terapêutico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Flavina-Adenina Dinucleotídeo/genética , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Placa Amiloide/tratamento farmacológico , Placa Amiloide/genética , Placa Amiloide/patologia , Sinapses/patologia , Vortioxetina/farmacologia
9.
Front Neurosci ; 12: 387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186100

RESUMO

Posttraumatic stress disorder (PTSD) is an anxiety disorder characterized by intrusive recollections of a severe traumatic event and hyperarousal following exposure to the event. Human and animal studies have shown that the change of amygdala activity after traumatic stress may contribute to occurrences of some symptoms or behaviors of the patients or animals with PTSD. However, it is still unknown how the neuronal activation of different sub-regions in amygdala changes during the development of PTSD. In the present study, we used single prolonged stress (SPS) procedure to obtain the animal model of PTSD, and found that 1 day after SPS, there were normal anxiety behavior and extinction of fear memory in rats which were accompanied by a reduced proportion of activated glutamatergic neurons and increased proportion of activated GABAergic neurons in basolateral amygdala (BLA). About 10 days after SPS, we observed enhanced anxiety and impaired extinction of fear memory with increased activated both glutamatergic and GABAergic neurons in BLA and increased activated GABAergic neurons in central amygdala (CeA). These results indicate that during early and late phase after traumatic stress, distinct patterns of activation of glutamatergic neurons and GABAergic neurons are displayed in amygdala, which may be implicated in the development of PTSD.

10.
Biol Psychiatry ; 82(11): 781-793, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28648649

RESUMO

BACKGROUND: Nicotine craving and relapse often occurs after reactivation of nicotine reward memories. We recently developed a memory retrieval-reconsolidation interference procedure in which reactivating nicotine reward memories by acute exposure to nicotine (the unconditioned stimulus [UCS]) and then pharmacologically interfering with memory reconsolidation decreased relapse to nicotine seeking in rats and nicotine craving in smokers. Here, we investigated underlying mechanisms. METHODS: In the first series of experiments, we trained rats for nicotine-induced conditioned place preference (CPP) or nicotine self-administration and ventricularly microinjected them with the protein synthesis inhibitor anisomycin immediately after UCS-induced memory retrieval. In the second series of experiments, we used tyramide-amplified immunohistochemistry-fluorescence in situ hybridization to examine neural ensembles in the basolateral amygdala (BLA) reactivated by nicotine conditioned stimulus- or UCS-induced memory retrieval. We then used the Daun02 chemogenetic inactivation procedure to selectively inhibit the nicotine UCS-reactivated BLA neuronal ensembles. RESULTS: Ventricular injections of the anisomycin immediately after nicotine UCS memory retrieval inhibited subsequent nicotine CPP and relapse to operant nicotine seeking after short or prolonged abstinence. More important, within BLA, distinct neuronal ensembles encoded pavlovian CPP and operant self-administration reward memories and nicotine (the UCS) injections in the home cage reactivated both neuronal ensembles. Daun02 chemogenetic inactivation of the nicotine-reactivated ensembles inhibited both nicotine CPP and relapse to nicotine seeking. CONCLUSIONS: Results demonstrate that the nicotine UCS-induced memory retrieval manipulation reactivates multiple nicotine reward memories that are encoded by distinct BLA neuronal ensembles that play a role in nicotine preference and relapse.


Assuntos
Tonsila do Cerebelo/citologia , Condicionamento Operante/fisiologia , Memória/efeitos dos fármacos , Neurônios/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Fosfopiruvato Hidratase/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Recompensa , Autoadministração
11.
JAMA Psychiatry ; 74(3): 224-232, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28146250

RESUMO

Importance: A relapse into nicotine addiction during abstinence often occurs after the reactivation of nicotine reward memories, either by acute exposure to nicotine (a smoking episode) or by smoking-associated conditioned stimuli (CS). Preclinical studies suggest that drug reward memories can undergo memory reconsolidation after being reactivated, during which they can be weakened or erased by pharmacological or behavioral manipulations. However, translational clinical studies using CS-induced memory retrieval-reconsolidation procedures to decrease drug craving reported inconsistent results. Objective: To develop and test an unconditioned stimulus (UCS)-induced retrieval-reconsolidation procedure to decrease nicotine craving among people who smoke. Design, Setting, and Participants: A translational rat study and human study in an academic outpatient medical center among 96 male smokers (aged 18- 45 years) to determine the association of propranolol administration within the time window of memory reconsolidation (after retrieval of the nicotine-associated memories by nicotine UCS exposure) with relapse to nicotine-conditioned place preference (CPP) and operant nicotine seeking in rats, and measures of preference to nicotine-associated CS and nicotine craving among people who smoke. Intervention: The study rats were injected noncontingently with the UCS (nicotine 0.15 mg/kg, subcutaneous) in their home cage, and the human study participants administered a dose of propranolol (40 mg, per os; Zhongnuo Pharma). Main Outcomes and Measures: Nicotine CPP and operant nicotine seeking in rats, and preference and craving ratings for newly learned and preexisting real-life nicotine-associated CS among people who smoke. Results: Sixty-nine male smokers completed the experiment and were included for statistical analysis: 24 in the group that received placebo plus 1 hour plus UCS, 23 who received propranolol plus 1 hour plus UCS, and 22 who received UCS plus 6 hours plus propranolol. In rat relapse models, propranolol injections administered immediately after nicotine UCS-induced memory retrieval inhibited subsequent nicotine CPP and operant nicotine seeking after short (CPP, d = 1.72, 95% CI, 0.63-2.77; operant seeking, d = 1.61, 95% CI, 0.59-2.60) or prolonged abstinence (CPP, d = 1.46, 95% CI, 0.42-2.47; operant seeking: d = 1.69, 95% CI, 0.66-2.69), as well as nicotine priming-induced reinstatement of nicotine CPP (d = 1.28, 95% CI, 0.27-2.26) and operant nicotine seeking (d = 1.61, 95% CI, 0.59-2.60) after extinction. Among the smokers, oral propranolol administered prior to nicotine UCS-induced memory retrieval decreased subsequent nicotine preference induced by newly learned nicotine CS (CS1, Cohen d = 0.61, 95% CI, 0.02-1.19 and CS2, d = 0.69, 95% CI, 0.10-1.28, respectively), preexisting nicotine CS (d = 0.57, 95% CI, -0.02 to 1.15), and nicotine priming (CS1, d = 0.82, 95% CI, 0.22-1.41 and CS2, d = 0.78, 95% CI, 0.18-1.37, respectively; preexisting nicotine CS, d = 0.92, 95% CI, 0.31-1.52), as well as nicotine craving induced by the preexisting nicotine CS (d = 0.64, 95% CI, 0.05-1.22), and nicotine priming (d = 1.15, 95% CI, 0.52-1.76). Conclusions and Relevance: In rat-to-human translational study, a novel UCS-induced memory retrieval-reconsolidation interference procedure inhibited nicotine craving induced by exposure to diverse nicotine-associated CS and nicotine itself. This procedure should be studied further in clinical trials.


Assuntos
Aprendizagem por Associação/efeitos dos fármacos , Fissura/efeitos dos fármacos , Rememoração Mental/efeitos dos fármacos , Nicotina , Propranolol/uso terapêutico , Abandono do Hábito de Fumar/métodos , Abandono do Hábito de Fumar/psicologia , Tabagismo/psicologia , Tabagismo/reabilitação , Adolescente , Adulto , Animais , Condicionamento Clássico/efeitos dos fármacos , Feminino , Humanos , Masculino , Consolidação da Memória/efeitos dos fármacos , Pessoa de Meia-Idade , Ratos , Ratos Sprague-Dawley , Recidiva , Pesquisa Translacional Biomédica , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...